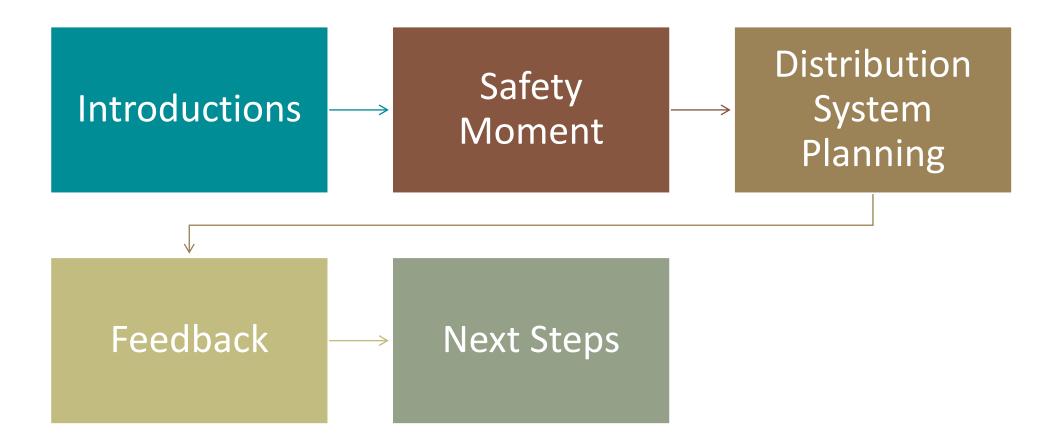
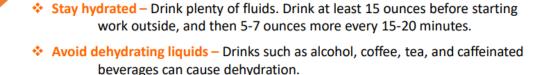


In the Community to Serve®


Washington Integrated Resource Plan Targeted Technical Advisory Group Meeting #7

MAY 16, 2024

MICROSOFT TEAMS/TELECONFERENCE


Agenda

Safety Moment

Hot Weather Safety Tips:

- Wear protective clothing Clothing that is lightweight, light-colored, and lose-fitting help protect against the heat.
- Pace yourself Work at a slower even pace and know your limits and abilities, especially when working outdoors.
- Schedule frequent breaks Take time to drink water and rest in a cool, shaded location, preferably with air conditioning.
- Avoid getting sunburn Wear sunscreen and a hat.
- Be alert to signs of heat-related illness Know what to look for and check on other workers for signs of heat stress.
- Avoid direct sun Find shade or block out the sun if possible.
- Eat smaller meals Eat fruits high in fiber and natural juices. Avoid eating meals that are high in protein.

Article Reference: https://blog.societyinsurance.com/10-safety-tips-for-working-in-hot-weather/

Distribution System Planning

KATHLEEN CAMPBELL, PE - SENIOR ENGINEER

Presentation will cover:

- 1. Distribution system modeling process
- 2. Identification of system deficits/constraints
- 3. Distribution enhancements/reinforcements options to address deficits
- 4. Enhancement review and selection process to capital budget
- 5. Utility Discussion on meeting energy needs

Distribution System Modeling

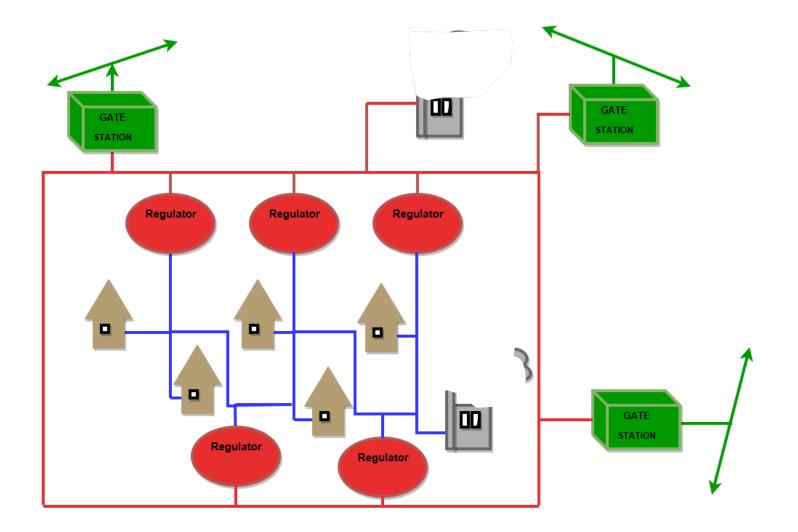
System Dynamics:

Piping:

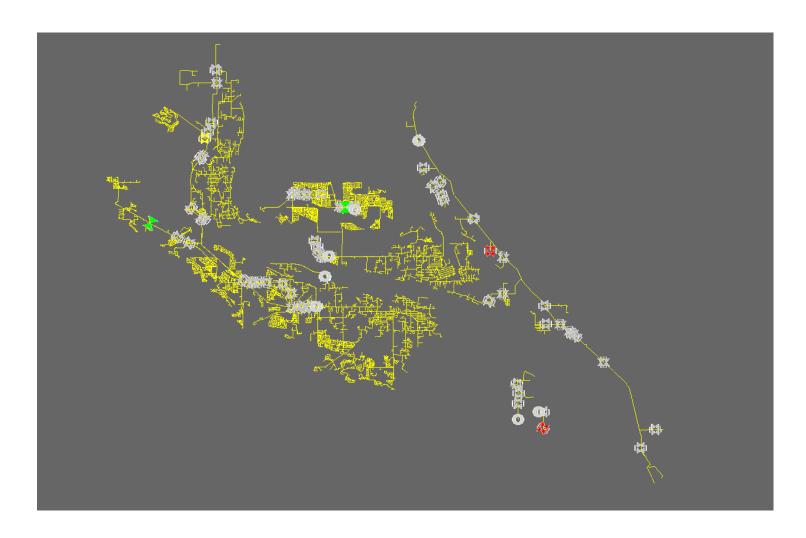
- o Diameter ½" to 20"
- Material Polyethylene and Steel
- Operating Pressure 20 psi to 900 psi
- Washington approx. 4,893 miles of distribution & 170 miles of transmission
- Oregon approx. 1,710 miles of distribution & 107 miles of transmission

System Dynamic's Cont.

Facilities:


- Regulator stations Over 700
- Valves Over 1,600
- Other equipment such as heaters, odorizer and compressors

System Design



Synergi Gas Modeling

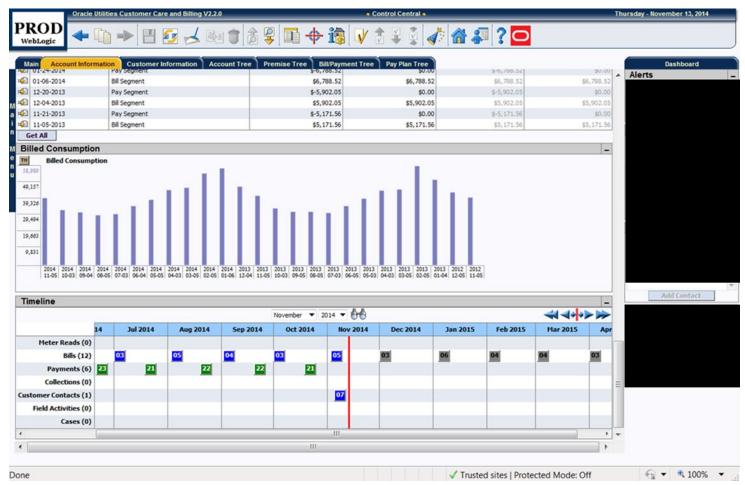
- Synergi gas is distributed and supported by DNV
- Synergi Gas models incorporates:
 - Total customer loads
 - Existing pipe and system configurations
- Synergi gas is an industry used hydraulic modeling software that allows us to predict flows and pressures on our system based on gas demands predicted during a peak weather event.
- Synergi models are rebuilt and validated every three years and maintained between rebuilds

Synergi Model Example

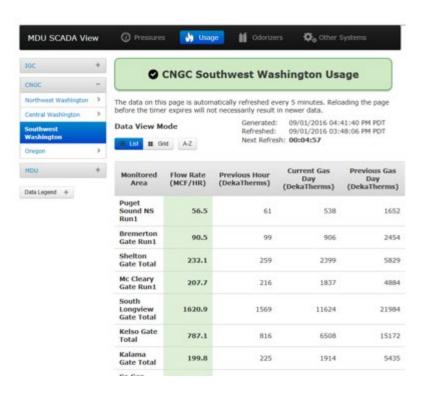
11

In the Community to Serve[®]

Model Building Process


When models are rebuilt

- We export current GIS data to build spatial model
- We export current CC&B billing data to CMM to create an updated demands file
- We validate and calibrate each district model to a recent low-pressure event using existing data (ERXs/pressure charts/SCADA/metertek/LV usage)
- We create a design day model based on the updated heating degree day determined by gas supply (determined by trending historical weather events)



Data Gathering

CC&B (Customer Billing Data)

Data Gathering

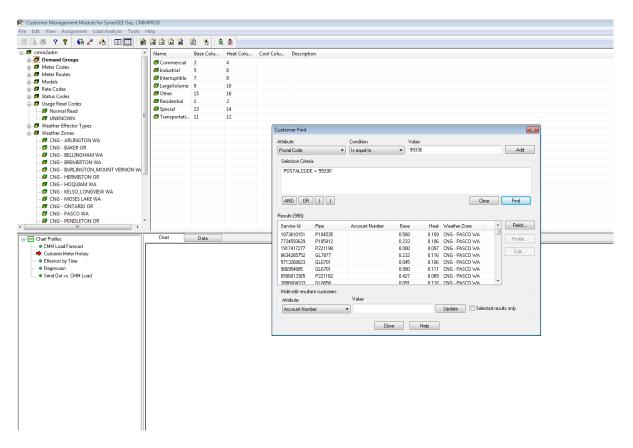
SCADA Data

Real time and historical flow characteristics at specific locations in the system

14

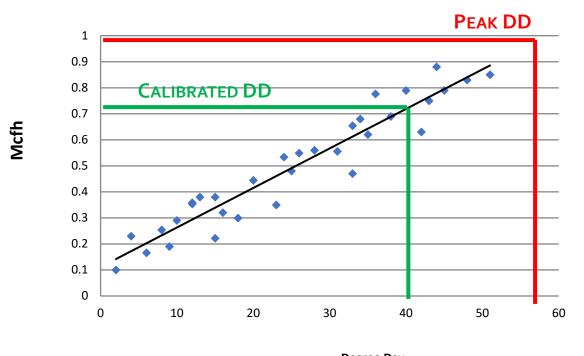
Data Gathering

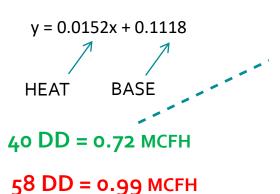
	İ	
District	HDD	Avg Daily Temperature (°F)
Aberdeen	46	14
Bellingham	47	13
Bend	71	-11
Bremerton	46	14
Eastern Oregon	73	-13
Kennewick	65	-5
Longview	46	14
Mt Vernon	47	13
Pendleton	67	-7
Walla Walla	66	-6
Wenatchee	65	-5
Yakima	65	-5


Peak Heating Degree Day (HDD) modeled by CNG based on historical weather data

Peak HDD = 60 - Average Daily Temp

Customer Management Module (CMM)




Brings CC&B customer data into Synergi as demands file

Demand file applies load spatially in the model.

Calibrated vs Peak Degree Day

Load vs Temperature

Degree Day

Synergi Modeling Capabilities:

- Review Large Volume Customer requests
- Model RNG
- Supports design/sizing of pipe and pipeline components (regulator stations, compressors)
- Future planning
- Model IRP predicted growth
- Identify deficiencies
- Determine system reliability
- Optimize distribution enhancement options

Demand Side Management

- Built into our 5-year growth predictions
- Past demand side management efforts have been incorporated into updated CMM/CC&B data used on the 2023 model rebuild.
- Could be considered as an alternative to address a deficit

Renewable Natural Gas (RNG) Modeling Update

- Cascade now has RNG flowing onto our system from the Horn Rapids Landfill and Lamb Weston RNG (both in Richland, WA).
- Still seeing significant interest from RNG developers in Cascade's service territory.
- Additional RNG will be coming online in 2024.

Cascade currently models RNG at 1/100 of contract demand in design day models.

Identification of System Deficits/Constraints

What is a Capacity Deficit?

A deficit is defined as a critical system that has reached a limiting capacity.

Critical system examples include:

- Pipeline bottlenecks
- Minimum inlet pressure to a regulator station or HP system
- Not meeting a required customer delivery pressure
- Component limiting capacity
- Velocity

Growth Modeling

- Model out 5-year growth predicted in the IRP to determine if or when a capacity deficit exists.
- Iterative process to determine deficit timing.
- We want to make sure that our systems can support growth and maintain reliable service during peak demand.

System reviews to avoid deficits

- Complete a comprehensive review of each distribution system model every two years to ensure that we can maintain reliable service to our customers during peak low temperature events.
- With our capital budget cycle, we also complete system reviews on an annual basis.
- If a deficit is predicted the system is evaluated and a reinforcement/enhancement is proposed and selected based on alternative analysis considerations and placed into the capital budget based on timing needs of the predicted deficit.

Distribution Enhancement/Reinforcement Options to Address Deficits

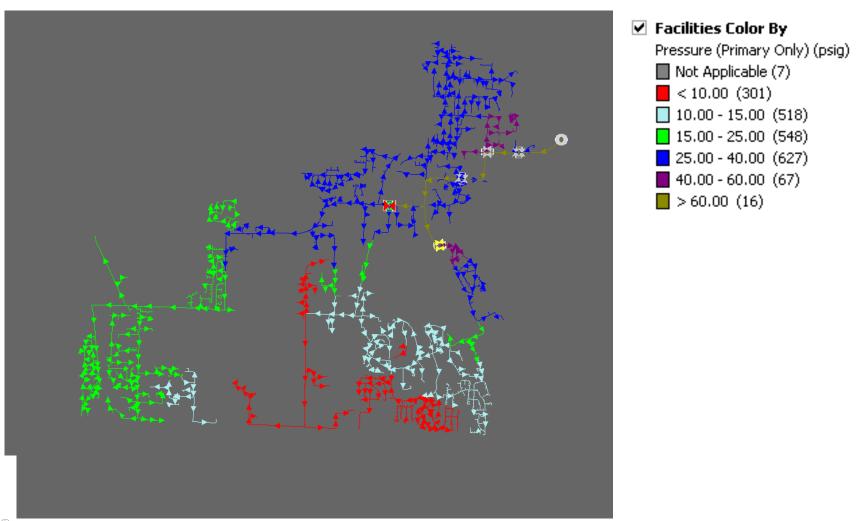
Enhancement Options

Pipeline:

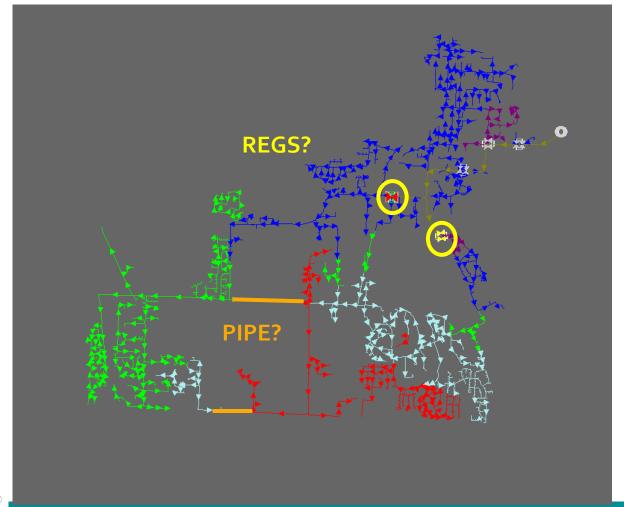
- Replacements
- Reinforcements
- Loops & Back feeds
- Pressure Increases
- Uprates

Facility Upgrades

Additional Regulator Stations feeding the distribution system


New Strategically placed Gate Stations

Compressor Stations


Distribution Enhancement Example

Theoretical low-pressure scenario

Distribution Enhancement Options

Low pressure scenario

- Compressor station infeasible
- Other Solutions?

In the Community to Serve®

Distribution Enhancement Options

Reinforcement option #1

Distribution Enhancement Options

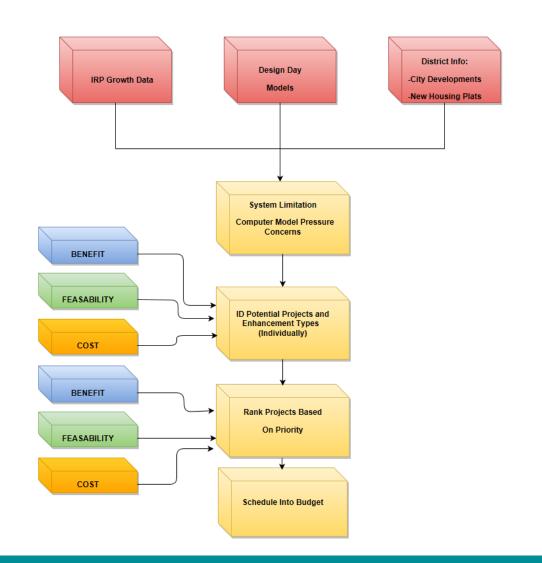
Reinforcement option #2

30

In the Community to Serve[®]

Enhancements Considerations:

- Scope
- Cost
- Capacity Increase
- Timing
- System Benefits
- Alternative Analysis
- Environmental Impact


Enhancement Review and Selection Process to Capital Budget

Enhancement Selection Guidelines:

- Shortest segment of pipe that addresses deficiency
- Segment of pipe with the most favorable construction conditions
- Segment of pipe that minimizes environmental concerns and impacts to the community
- Segment of pipe that provides opportunity to add additional customers
- Total construction cost including restoration

Enhancement Selection Process:

Info & Data

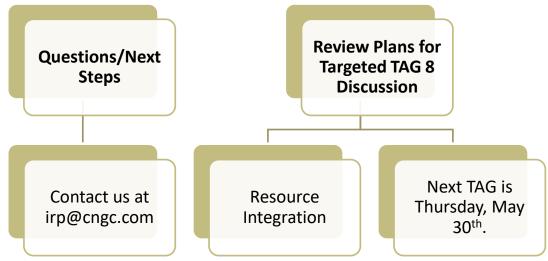
Project & Schedules

Ongoing Steps/Process to review/identify IRP projects

- Assess our systems and identity deficits caused by 5-year growth modeling
- Propose and evaluate alternatives to address deficits
- Discuss deficits and alternatives with management
- Work through alternative analysis process
- Budget projects needed to meet 5-year core growth

Feedback for Cascade?

Do you have comments or ideas that Cascade should consider regarding Distribution System Planning?


Process Item	Date	Process Element
Targeted-TAG	Thursday, January 25, 2024	What is an IRP and how to get involved
Targeted-TAG	Thursday, February 15, 2024	Avoided Cost
Targeted-TAG	Wednesday, March 6, 2024	Energy Efficiency
Targeted-TAG	Thursday, March 28, 2024	Equity in the IRP
Targeted-TAG	Thursday, April 11, 2024	Customer/Load Forecast
Targeted-TAG	Tuesday, May 7, 2024	CCA/Compliance Modeling
Targeted-TAG	Thursday, May 16, 2024	Distribution System Planning
Targeted-TAG	Thursday, May 30, 2024	Resource Integration
		Process, Key Points, IRP Team, Timeline, Regional Market
		Outlook, Planned Scenarios and Sensitivities, Stakeholder
		Engagement, Demand and Customer Forecast and Non-Core
		Outlook, Drilling down into segments of demand forecast.
TAG 1	Thursday, June 13, 2024	Upstream Pipeline presentation.
Receive feedback on		
TAG 1	Friday, June 28, 2024	
		Respond to TAG 1 Feedback, Distribution System Planning,
		Alternative Resources, Price Forecast, Avoided Costs,
		Current Supply Resources, Transport Issues, Carbon Impacts
		Energy Efficiency, Bio-Natural Gas, Preliminary Resource
TAG 2	Thursday, July 25, 2024	Integration Results.
Receive feedback on		
TAG 2	Friday, August 9, 2024	
First Draft	Friday, September 6, 2024	
Comments Due	Friday, October 4, 2024	
		Respond to TAG 2 feedback, Final Integration Results,
		finalization of plan components, Proposed new 2- to 4-year
TAG 3	Wednesday, October 30, 2024	Action Plan
Final Draft	Tuesday, December 3, 2024	
Comments Due	Tuesday, January 14, 2025	
TAG 4 (if needed)	Thursday, January 30, 2025	
Final Complete By	Friday, February 14, 2025	
File	Monday, February 24, 2025	

2025 WA IRP Schedule

In the Community to Serve®

In the Community to Serve®

Washington Integrated Resource Plan Targeted Technical Advisory Group Meeting #7

MAY 16, 2024

MICROSOFT TEAMS/TELECONFERENCE

